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NOTATION

Area of frame
Integration constants ‘
Bay matrix; see Equation (8]
Faying width of frame
ER’
12(1 - v?)
Young's modulus
Frame matrix
Deflection functions

Deflection functions
(Ap + bh)[Vl +a?82 sinh K1 + V1-4282 sin k,z] +
ok

"N "0‘,3‘ (cosh K ;I - coe K,
Shell thickness

Moment of inertia of frame section about radial axis

all -;-a g2 |
a1 +7¢ 22

" Center-to-center distance of frames

Clear distance between frames
Loﬂgitudinal bending moment in shell
Pressure

Collapse pressure

Radius to middle surface of shell

Radius to center of gravity of frame section

Bay matrix; see Equation [11)
2ho

PR

Longitudinal shear stress in shell
Distance along shell generator

Radial deflection of shell
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PR?
Yo ags 2~V
R 3(1-v?)
: R22 .
g2 PR3
kA
8 Differential shear function
v Poisson’'s ratio
o Stress
B1r Pan $3, B4 Functions defined by Equations [41], [44], (48], and [46],
' respectively
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ABSTRACT

Recent developments in structural research on circular ring-stiffened
cylinders subjected to hydrostatic pressure have indicated that refinements of
the standard strength analysis are required to account for the effects of discon-
tinuities such as a heavy frame or bulkhead or variations in shell thickness. A
procedure has been developed for computating axisymmetric stresses near these
discontinuities in a cylinder in which the thickness of the material does not vary
between a pair of stiffeners but may change from one side of a stiffener to the
other. The results of this analysis indicate that stresses higher than those pre-
dicted by a standard computation will usually exist near these discontinuities.
A method of reducing this effect by modifying the geometry near these points is
also presented.

INTRODUCTION

The strength of thin-walled, stiffened, cylindrical shells against axisymmetric yielding
is usually computed from an elastic analysis of Von Sanden and Gunther.! This analysis gives
the swress distribution in the shell, and collapse is assumed to occur when the stresses at the
- middle of a bay exceed the ,yield point of the material. A more recent analysis developed by
Salerno and Pulos? accounts for the longitudinal moments resulting from the end pressure to-
gether with the radial deflection of the shell and, therefore, gives more accurate stresses.
Although neither of these analyses indicates any difference in strength between bays, it has
been observed experimentally that failure by axisymmetric yielding almost invariably occurs
in the full-length bay nearest a bulkhead or heavy frame. To determine the effect of end con-
ditions on the stresses in the shell, a modified Salerno and Pulos analysis is derived which
takes into account variable frame spacing and size and changes in shell thickness; it can be
easily extended to variations in radius between adjacent bays.

To offset the weakening effect of the heavy member, it has become customary to reduce
the spacing of the first frame from this member. This practice, however, merely forces the
weakening effect of the heavy member into the next bay without appreciably increasing the
collapse pressure. Since it is usually undesirable to reduce the length of more than one bay,
another method to increase the strength of the end bays is proposed in this report.

ELASTIC STRESSES IN FINITE CYLINDER

The theory of Salerno and Pulos assumes an infinite closed cylinder composed of a
linearly elastic material of uniform thickness and radius reinforced by equally spaced, equal-
sized frames and subjected to hydrostatic pressure. A typical bay of this cylinder illustrating

lIReferences ore listed on page 24,
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Figure 1 — Typical Bay of the Salerno and Pulos Cylinders
the initial and deformed shapes is shown in Figure 1.

The deformation defined by the radial deflection y as a function of z must satisfy the
differential equation

d'y 12(1-»2) PR d?%y 12(1-v2)[ PR? ]
= —+ -0 (1

3 . : y-——(1-v/2)
dz*’  9ER®  de? R2 U EM

where E is Young's modulus, v is Poisson’s ratio, and the other terms are defined in Figure 1.
Setting

H1-v2) PR : PR?
4 2
= . T —— d e 2— 1
- e T AN T > S
this simplifies to*
'V + 40t B2 ¥+ dat(y-y,) =9 (2]

Note that y, is the deflection which would occur if the stiffening frames were not present.
One form of the general solution of Equations [1] or [2] is
y= A, cosh K,z cos K,z + A, sinh Kz sin K,z + A3 cosh Kz sin K,z
+ A sinh Kz cos K2+ y, (8a]

where K, -~aV140282‘ and K, =a¥'1+ @282, The derivatives of y are readily obtained in
the following form

y'= (4,K | + A)K,) sinh K 2z cos K,z + (A,K, - A,K ) cosh K,z sin K ,2

+(A3Ky+ AK,)coshK zcos Kyz + (A3K, - A K,) sinh K,z sin K,2  [3b]

*The solution which follows is taken from Reference 3.



y** = [A,(K3 - K3y + 24,K K ) cosh K 2 cos K,z + [Ay(K - K3) - 24, K, K]
sinh K ,2 sin K,z + [A(K3 = K3) - 24,K K ;) cosh K ;2 sin K,
+[A, (K3 = K} + 244 K K] sinh K 2 cos K 5z | (3c)

g [AK (K3 = 3K2) & AK (8K2 - KD sinh Kj2 cos Kj2 + [4,K, (K3 - 3K
v Ak (K2 - 3K2 )] cosh K 2 sin K2 + [AK(3K3 = K2 + 4K, (K3 - K]
. cosh K 2 cos K 5 + [AK (I3 = 3K3) + AK (K} - 8K sinh K,z sin Kpz [3d]
Let _
= (Ap + b1y (V1+ 2787 sinh Kyj+ V- a®B? sink )+ g V1-a'B°
(cosh K \J ~ cos K,)) : 4
where Ap is the area of the frame cross section®* and b is the faying width of the frame.

Applying conditions of coutinuity and equilibrum, Equations (3] for the Salerno and Pulos
cylinders may be reduced to:

. " 4f
y = y.[l I (2 (5a]
’ A '
Y 'F -
o =Wy f2) [5b)
. A
y oF
202 = - y"_Tl-f:’(z) [5¢]
1 )
oa® == .’/.—"ﬁ’fq (2)
where :
1,(# V1 - a?82 [cosh K,z sin K (-2 + cosh K (1-2) sin K 2] V1 4282
[sinh Kz cos K (I-2) + sinh K ; (1-2) cos K ,z] (6al
142 -11_(:)= 2 [sinh K ;@ sin K (I~2) ~ sinh K (I-2) sin K, (6b)
a

f1 (2 :
fa) = —— = V1= aBeloosh Kz sin Kyf1-2) + cosh K (1-2) sin K ~V1+a%?

2a

[sinh K2 cos K (I-) + sinh K(1-2) cos K,z [8c]

sGreater accuracy is obtained by using for A F the value obtained by multiplying the true ares of the section by
R/R F where R F is the radius of the center of gravity of the frame.
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IACE ! -- 2{.’32 [sinh K2 sin K ,(}- 2) - sink K (I~ 2) sin K2} + Vi-afs¢
[cosh K ,(1-2) cos K,z - cosh K,z cos K, (l-—z)l} [ed)

In an actual structure, the presence of bulkheads or heavy frames precludes the assump-
tion of one deformation pattern for all bays as assumed in the Salerno and Pulos analysis.
However, an approximate relationship can be found by computing y and its derivatives at a
distance from the bulkhead in terms of the conditions at the bulkhead and by assuming that
these will approach the values computed by a Salerno and Pulos analysis as the distance in-
creases. Basically, symmetric deflection assumptions of Salerno and Pulos are replaced by the
matrix equation

Blo,sep = 1Blo; - (7

where

18« | 262 | 18]

The subscript 0,7 denotes that |B| is to be evaluated at the bulkhead or at a frame (2=0) in
the ith bay from the bulkhead, and the subscript 0, S&P denotes values at z = 0 in the infinite
cylinder. Since Equation [7] is rarely exactly satisfied, {Bl, ; will be taken such that it is
most nearly satisfied by a ‘least-squares’’ approximation consistent with the bulkhead con-
ditions. .

The basic problem, then, is to determine B, ; in terms of the bulkhead condition 1Bly o
so that Equation [7] and a least-square estimate can be used to determine |B|, ,. If
Equations (3] are evaluated at z = 0, they can be reduced to

A =y0) -y, (9a) -

*We could as easily have used |B|I,S&P‘ = |B|“ .

\l
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Now, substitution of Equations [9] into tquations [3], which will yield conditions at any point
of the bay, gives

~— ——

Bl = ISI, ,xIBly,  when 2 % (10]

where [S|_ . is defined by Equation [11] on page 6.

The identity equation Yu = ¥y Which holds throughout the bay, is included in Equation [10]
for reasons of conformableness which will be apparent later. Replacing 2 by ! s and letting
¢ = 1in Equation [10] gives

lBl‘l‘,x =18, x 1Bly, (12}

I;Bl,"l‘ now denotes the boundary conditions at the end of the bay away from the bulkhead. It
is possible to assume that | B t.1= |8 !, sap 8nd to solve immediately for IBI“O" 1+ This will
not give a very good approximation because !, is usually too small. Inorder to obtain |B| oy
at a greater distance from the bulkhead, |B| must be found on the other side of the frame. The
conditions on both sides of a frame are shown in Figure 2,

Vi+’ (0)

ﬁvi “i)
ym(O)

——— v K
2R TIANGR T~
2 ! 2
\ ML) M+ (O

Figure 2 — Loads and Deformations at a Frame
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Assuming that the hying width b remains straight, four equations can be obtained from
considerations of continuity and equilibrium. Obviously

Yie1 (0= yi(d)+ b ¥ ) (13a)

¥/ 1 0= 30 | (13b]

Equilibrium of vertical forces yields
(1)-V.  (0)-P . { 2} = ol13¢)
Vi) - V”., (0) - Pb + EL 7 = ,»(——2 (rz) (

Moment equilibrium yields 34
Ip +- |

MG = M, (0) +§-[V‘ )+ Viyy (.o)], -y ) ———— =0 (1)

where / * is the moment of inertia of the frame about the vertical (radial) axis. It should be
noted that A may be selected from either bay as long as A + bk represents the total area of
frame and faying width of shell and /p +( 534/12) represents the total moment of inertia about
the radial centerline. The moments and shears are obtained in terms of y’” and y*** by the
relations

M=-~Dy™ [14]

Ve- Dynn [15]

EA®
where D = -+ for a cylinder.

12(1 =~ %)
Substituting these expressions into Fquations [13] and rearranging gives:

1Blo, js1 = IF".', iv1 < 1Bl ; (18]

where

) R
*Greater accuracy is obtained by using for / F the value obtained by multiplying the true / of the section T
F
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The double subscript ¢, ¢ + 1 indicates a frame between i and i + 1 bays ffom the bulkhead.
Equation [18] includes the identity equation

(y“‘).'n ® (y")i

and allows the shell parameters (except radius) to change.
Substitutioni of Equation [11] into Equation [16] gives

1Blg i1 = IF] x (|S], ;% 1Blg ) (18]}

i,i+1

By repeated application of Equation [18] we may obtain

. . *
Blo,ivm = 1Flismat, sem X 1S jumer X0 oo X 1FY g < 181 5 x 1Bl g (19]
For i = 1 Equation [19] may be shortened to
1Blomar =I5 Slpary * 1Blo,, (20)

where |F, 8|, | is the product of the |F| and |S| matrices in the order of Equation [19] for
all frames and bays between the (m + 1) bay and the bulkhead. Now if the product for matrix
IF’ Slm‘+ 1,1 i
satisfied by ¢ = m + 1. Almost all problems of practical interest can be carried far enough to
satisfy this condition, and it will be assumed hereafter that |F, S| ., | does in fact terminate
at such a point. Substituting Equation [20] into Equation [7] gives

ends with at least two consecutive identical bays, Equation [7] will be very nearly

‘lm‘o,S‘&P ‘“"'Sl'ml,l X I‘Bl‘o,r (21]
As previously noted this is not exactly true, but a least-squares process can be used to
estimate two of the bulkhead conditions if the other two are given. Any pair may be used as
the knowns, but y and y** will be used here because they are the most readily evaluated at a
bulkhead at pressures sufficiently high to cause yielding at the bulkhead.** Setting

('_v’_) u (_y"’) S

1

*m now indicates the number of frames from any starting bay i.

s4See Appendix A,



and neglecting the identity equation, Equation (21} reduces to

au+B veygmu (22a)
au+B,v +y,=0 (22b)
gt +8,0 +yy =0 . (22¢]
A+, 0+y,=0 (22d]

The method: of least-squares shows that u and v are given by

" LaBipy - Zayip?

. (23]
Sa282-(2aB)?

Saflay - LB8yial

2a?587-(2ap)?
Combining u and v with the-known values y, y*/2a? , and y, gives the complete column matrix
|~B|o,1 , and the column matrix |Blg,; at any other frame is then found by multiplication by the
|F.“S|“.'l matrix. Equation [10] then completely determines the deformations, and hence the
stresses, in any bay.

(24]

OPTIMUM DESIGN FOR END BAY

The analysis of the previous section is applicable to an axially symmetric structure
composed of circular cylindrical bays with a common axis and radius. The length of bay,
thickness of shell, and Young's modulus may vary from bay to bay; the size of stiffeners may
also change.

In actual practice, however, all these parameters are usually constant except for iso-
lated interruptions such as bulkheads, heavy frames, and conical reducer sections. Analyses
made on several cylinders in the range of current submarine design indicate that there is
usually a bay near any bulkhead or other variation of geometry which has larger elastic circum-
ferentiai membrane stresses than those bays farther from the bulkhead. The following design
method has been developed to eliminate this weakness.

For this design procedure a long, ring-stiffened cylinder of uniform geometry composed
of a ductile material and terminating at a relatively rigid bulkhead or other discontinuity is
assumed. It is desired that the stress pattern caused by the bulkhead shall not cause any bay
to be weaker than a bay more distant from the bulkhead. It is apparent that, if Equation [21])
is exactly satisfied for some m, then all subsequent bays will have the Salerno and Pulos?!
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stress distribution. To satisfy Equation [2fl‘, two additional parameters’are required. If
they are selected from the geometry of the first bay and first frame, and Equation [21] can be
satisfied for m = 1, the stress pattern of the second and all subsequent bays will be identical.
The length I, of the first bay and the area A of the first frame are selected as the parameters
to be determined. Since stresses are nonlinear function= of pressure, this determination should
. be made for P = P,, the expected collapse pressure.

It is more convenient now to select the origin, 2 = 0, of the first bay at the first frame,
while the origin for the second or typical bay will remain as it was. The nomenclature for this
case is shown in Figure 3.

Figure 3 — Nomenclature for End Bay Design

At the right of the frame we set

1Blg,2 =1Blo, sap (28]

From Equation [16]
|Blg,y =IF*ly,, x|Blg,s _ [26]

where |F'*| 21 is identical to |F |2,1 with the second and fourth columns multiplied by (-~1).
Since y gy p (0) = 0, substituting Equation [25] into Equation (28] and rearranging yields

¥4(0) - ysqp(0) =0 {27a}

) ysup(0)
o s T o [27b)

11



[

¥1°(0)  ysep(0) Ap + bk

2o? 7 - (ba)? o Ysur (0 = (Ba) ygp (00 + (ba)? v, (27e].
¥ (0)  ygap (0 Ag + b
7 ap 0O T Yanp O - 2 (0 2baly, (2741

It is now convenient to define 5 and AV as follows:

AV Vi(0) - Vs plO)
= — - - [28]
4D 4o°D
whence Equations {27c] and [27d] may be written as
vy (0)  ygup (0)
- = - (ba) & (27¢’]
24 2
y170) yggp (0)
- e I - 2 8 [27d‘]
2o 2a® '
The difference between Equation [10] for Bay 1 and Equation {10] for Bay 2 is
1Bly, 1~ 1Bl o= I8l,,;x |Blg,1=1Blg,2 {29)

since under the assumptions of thi s section I‘Sl‘,,,- is the same for all bays. From Equations

(27 0
| o
|Blo = 1Blg , =|- (03] [30)
- 28
0
and, for z = ,, Equation [29] becomes I 0
0
IBl; y-1Bly, 5= |87, ;x| ~ (ba)d | [31)
1’ 1 1, 28
0

Now, since ’Slll" and |Blll,2 are completely known from the geometry and Equations (11] and
(5], respectively, and since there must exist two boundary relations on IBI,,.I'I,‘ Equation

[31] represents four equations in the two unknown boundary conditions and the two parameters
I, and 8. Equation (28] defines & as a function of the difference between the shear on one side
of the first frame and that on the other side. This indicates that the area of the first frame

#This subject is discussed in Appendix A




must be altered to maintain the assumed ooudit.ions.‘ Since the S&P frame is in equilibrium
except for the load AV, a corresponding A A r, is gomputed from the equilibrium expression

AV R? (32]
F1~ By, (0)
and Equations [5a] and (28] as
Adp - 24 [33)*
Ap

| ' ay, [1 - <0>]

assuming a solution to Equation {31} exists then Equation [31) and the two known boundary
relations will completely determine the geometry necessary for the~eondition that the second
and all subsequent bays will have identical stress patterns at the collapse pressure. This is
developed in detail in Appendix A. A sample solution is presénwd in Appendix B.

To determine the strength of the first bay, Equation [29] is written, after substitution

of Equation {30], as follows:

yy(2) - 3/2(3') ==8g,(2 - [34a)
yid2) - y5 (2) o
yi{@y - yg' (@)
- -y 93 (2) [34c]
2a? )
¥y 7@ -y (2)
- =-58g,(2) [34d]
a3
where
i inh K, zcos K, sinh K.z sin K, 2 ‘
cosh Ky 2einky? SMAZ 2%, b . 2 (35a]

WO Tyram | Via® Vica's®

R
F
1
*The sctus! additional srea required will, of course, be-given by (A AF‘ )(T)

13




co3b

g1(2 . 2sinh K e sin K, 2 ocosh K,  sin Kye
’z(d. ) = 71"“‘8“ +(b¢ | m
. :
1-a2g?
9y°(2) coshK,zsink,z sinhK,z2c08K,2 b . X
g3 (@)= —— o —— —¢ - s + Goa y2coskK, 2
3 %  Vi+a?p? Yi-a?8?
202
- ‘7—5%37 sinh K, z sin K, a) (35¢)
0,7 (a) aap
Iy(D = = 2008h K, 2008 K, 2 - ‘ inhK, zsinX, 2
A ot ' 1 2008 Ky z V_—_—l-d'ﬁ":: 4 @ sin 23.
: -/ 1-8a%82 1+2a28 _ ) |
+baf ——— sinh K, 2008 K, 2- ————— cosh K, z sinK, 2} [35d)
(v"—l..zsz e R

For cylinde;s of interest here, it will be true that vy () <yp (1), 97 U)) > PRCAL
and 1, <—E- If this is. so, then g, (2) > 0 for 0<z < y 8nd g, (2) > 0 near the middle of the

bay. Thn: the maximum longitudinal stress near the middle of the first bay will be somewhat
higher than that of a typical bay. However, the average and also the maximum circumferential
membrane stresses of the firat bay are less than those of all subsequent bays. Hence the first
bay should withstand a higher pressure than the typical bays.

DISCUSSION

The analysis of this report is, of course, limited to small deflections in axially sym-
metric, thin-walled cylinders. Therefore, cylinders with the ends designed by the method out-
lined here which fail by an axisymmetric shell yield should have the maximum obtainable
strength. It is logical, also, to expect such cylinders which fail by shell instability to have
at least as high a collapse pressurs as can be obtained with any other end design.

In applying the analysis of this report, there are a fow points to be remembered. This
analysis, which is analogous to the Salemo and Pulos solution for the infinite stiffened cylin-
ders, gives results which are nonlinear functions of pressure. Familiarity with the Salerno and
Pulos solution should not be allowed to lead one to believe that this nonlinearity is negligible,
since the variation in deflection near a rigid or nearty rigid bulkhead may easily be five or six
times that in a bay remote from the bukhead, thus greatly magnifying the “beam-column" effect.
In addition, at pressures near collapse there will be a change of boundary conditions due to
higher local bending stresses near the bulkhead which produce a *‘plastic hinge” at a pressure

14
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well below that which causes collapse of the cylinder. Both of these nonlinear effects are
even more important where an outward negative deflection is expected, such as at the juncture
of a cylinder with the large end of a cone. For these reasons caution must also be exercised

in interpretation of experimental strain data from a cylinder designed by the methods presented

here, since the data taken at low pressures will always show greater strains near the middle

of the second bay than in any other bay. It is only when the pressure nears the collapse

pressure’ that the strains in the second bay will approach those of subsequent bays.
ACKNOWLEDGMENT
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APPENDIX A
BOUNDARY CONDITIONS AND SPECIFIC PROBLEMS

.
The usefulness of this analysis in design is, of course, limited by the ability of the
designer to estimate boundary conditions. Although it is not necessary that the boundary

condition be known absolutely, an at.tempt should be‘msde to lzmlt the, gu(m of the absolute
values of the errors in each of the pair of y,(Z,); -’/1“ o Toa? 2"3
to 8 percent of y, . Although it will usually be necessary for the designer to exercise judg-
ment in selecnng proper boundary values, a few more common cases will be discussed here.

In all the examples that follow it will be assumed that the material is ductile and of the ideally
plastic type. In other words, it has a stress-strain curve which can be approximated by a
linear elastic curve terminating in“a well-defined plateau-type yield.* It will b& assumed that,

for these cases,only !, and 4 Fy can be varied to attain the maximum collapse pressure.

which are used

SYMMETRICAL HEAVY FRAME OR BULKHEAD

By a bulkhead is meant.a structure for which it may be assumed that all deflections are
zero, i. e., y,(!,) = 0. Itis, therefore, only a special case of a heavy frame located so that
it may be assumed to be symmetrically loaded. For the heavy frame there are two possibilities
to consider; (1) a ‘‘plastic hinge’’ is formed in the shell at the frame, or (2) partial or no yield-
ing occurs near the frame prior to collapse. Since in case (1) only local yielding will occur,
it is assumed for the first case that the tangent to a gehetator will rotate at the bulkhead or
heavy frame i. e., y," (},) %£0. For the second case it is assumed that no rotation occurs and
y{ ()= 0.

For the first case, then, two conditions at the frame are known. The first, which comes
from equilibrium (see Equation [13c]) and symmetry (i.e., equal deflections and shear forces on
either side of the.frame), is

vy (45 + Bh)o vy (%))

el boo et @y)- boay“-2¢2f32—-;— =0 (36]
a

Tlere the subscript 0 refers to the heavy frame. The second condition is based on the maximum
strength of the material at the frame which occurs under the assumed equilibrium stress dis-
tribution of Figure 4. It is

P E ‘
, : 14+ ‘
vy o?82 2ha, PR 2 ho, 0,+0,
— () =h -—— 1 — : (37)
202 2 PR 2k,/} PR o, -9/ |

1-
2ho,

#Other types of material are beyond the scope of this report.

hat
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Figure 4 — Assumed Stress Condition at. Formation of Plastic Hinge

If shear stresses are neglected, the Hencky-Von Mises criterion of yielding gives:

. r E 2 ]
1 .'/1“[) E!lt (ll)
0, = - (1-2)- 40 (1-v+rd- 3(—-——) {38a)
! 2(1-v+1?) L R B ,

£y (1) ‘ Ey, G\
op= 1 11 (1- o)~ 405 (1- v+v7)~-3( L ) (38b)
g-v+rd | B |

where o, is the yield stress in a one-dimensional stress field (assumed to be the same in
tension and compression). Since o, and o, are nonlinear functions of y,(1,), it is easier to
make a preliminary estimate of y,(l,) and then to compute these stresses directly. Stresses
so obtained will usually be sufficiently accurate.

Combining Equations (861, [34al, [34b], [34d], and (5] with z = I, gives:

4r »o |4, , .,
Yu 1""‘f1( ')+7m[_’7 (282 12(2) + £,0))- 5o°E| -

. A
) {9‘1 @y -m [2«232g2 )+ g, “1)]} (39]

Combining Equation [37] with Equations [84c] and [5c] gives:
e (r-3) - ) »
2(2-1) r)‘ [1 “\rt+1 o -0 = 13U P = =893, [40]
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where T = -2Ac, /P, R. Elimiaation of 8 from Equations [39] and [40] yields

mzo-v’“ u’)( 1[ “1( x'::2>]

R R N

h
1 a(dp + M)o[ (2821, (3 + /4“1‘) bo‘]‘ f1(3y) .
g3(1) 4 e~
- +-;,ff3(l‘)=0 (41]

A
1) - —— (24282 v
94 () YT (262829, (1)) + g, (3))

The smallest value of !, which saiisﬁes Equation {41] is the desired solution. Since for I,

near l, ¢, is an approximately linearly decreasing function of I, F.quation [41] can usually be
solved most easily as follows:

Step 1: Compute ¢, (¥).

Step 2: If ¢, (1) < 0; compute ¢, (0.90).
It ,(2) > 0; compute ¢, (1.1J).

Step 3: Compute !, by a linear interpolation. *

It ¢, (1) <0, then
! .:1 0141 (D ]z : [42a)
= |1 - < .42a
! é,(0) - ¢,(0.90) |

- 0180 1., (42b]
= b > g
e (D~ (L1D] "

This process may, of course, be repeated for more accuracy.For the case of partial or no
yielding at the heavy frame, we assume y/(},) =0. It follows from Equation [34b] that
Equation {40} can be replaced by

If ¢, () >0, then

AF ’ o
yn-ﬁ- fa () =-- 893 @) (43]

*More accuracy may be obtained by computing an intermediate value of ¢l and passing a circle through The
three values graphicslly.
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Then the expression analogous to Fquation (41] is

| A Ay Ap
. ¥ (‘;)'{ W[ A (ll) bo‘] — f (‘1)}

- |7 f()=0 [44)

A
[0 (l,) -m"‘): 94 (11)
The solution is by the same method as that used for Fquation (41]. The ccrrect value of ll'
is then, of course, the smaller of the two values satisfying Equations [41] and [44]. It is
obvious that Fquation (41] will usually apply to bulkheads and very heavy frames, while
Fquation [44] will apply to moderately heavy frames. The transition point will vary depending
on the geometry of the cylmders and the lighter-frames. llavmg I, AA Fy is obtained from
Equations [33] and [39] as:

A Ap A Ar a2
AAF‘ -t 1 - 1 (ll)+mo' ‘—”-(20 B f, (4 + 14 (ll))' b
p -1
F h o
[1 -5 h (0)] [91 (M*m (207829, () + 94 “ni} [45)

3
For the rigid bulkhead :(_A—_— is allowed to go to zero in Equations [41] and [45). Some-
times, where a nearly nglg bnlkhesd is present, the actual radial deflection of the bulkhead

may be known from previous experimental data more accurately than an effective area can be
computed. Then it is simply a matter of replacing

hod Af | ,
. a(4y "-.M._)o{y“ [bo‘" Y (2azﬁ2 fa(9) + 1, (l,)ﬂ - 8[2a82g,(1,) + 94“1)]}

by y, (,) in Equation (39]. Then an equation analogous to Equation {41) results:

bg(ly) = f;(_l_:_"_ ( ) [ T __})(0‘, t 02)]4-'93 il [1 -i”f fy (8 -_V%lx_)_]

2(2 T+1N\oy=-0,1] g, (y)
+_" fg (i))=0 ‘ {46}

and Equation [45] is replaced by

4 vy (4y) A . Y
AAFI"’L[I"_FHUO ;1]{[1 H’f‘(o)]g,(li)} (47
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INTERSECTIONS

At an axisymmetric intersection of a cylinder with another shell such as a transition
cone or an ellipsoidal or hemispherical cap, the simplest method of design is to estimate the
deflection at the intersection by some approximate analysis or to compare the proposed struc-
ture with available experimental results. Then Equations [(46) and {47] can be used, or, for

relatively large positive (inward) deflections, Equation [46] should be replaced by a modified
Equation [44].

| 7, () Ap v1 ()7 Af

Of course, if there is sufficient knowledge of the contiguous shell near the intersection
at high pressure, a more detailed analysis can be made from conditions of continuity and
equilibrium at the intersection. However, this will usually involve more work than is practical.
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~ APPENDIX B
NUMERICAL EXAMPLE

A numerical example is provided to illustrate the procedure fer designing an end bay
and frame. The pertinent scantlings and material properties are

R = 8.4180 in. - Ry = 8.8464 in.

&k = 0.0858 in. . v = 0.30

! «1.8217 in. E = 8 x 107 psi
b = 0.0443 in. T o, = 66,400 psi

Ap = 0.0518 in.

The cylinder is closed by a rigid bulkhead [y, (Z,) = 0], and P, is estimated to be 1000 psi. The
computation is facilitated by use of an instruction sheet. The first column of the instruction
sheet contains the item number in parentheses. The second column indicates the operation,
the result of which is to be recorded in the third column. Numbers in parentheses in the second
column are item numbers and indicate that the op,eutio;\ is to be performed on the quantity
recorded in that item, e.g., (2) (34) means multiply the quantity in Item 2 by the quantity in
‘Item 34, whereas 2(34) means multiply the number 2 by the quantity in Item 84. The first quan-
tity in Item 84 is always X 0.1 depending upon the sign of ¢, (), Item 88. The subaoquont
values are entered from the previous interpolation in Item 121. The last value in Item 86 is
the correct value of J,, and Item 126 cont .ns the ratio Ay / Ap . Thus L,, the distance

from the bulkhead to the center of the first frame, is obtained from !, by adding 5/2, and A,l
is obtained by multiplying Ay by Item 126. In the example which follows the interpolation
was carried out three times in order to demonstrate that the first interpolation is sufficiently
accurate for design purposes. : '

N
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B B
T

Ay

e,

End Bay Design Calculation Varying L, and 4 F,

Itom Openation Resuit . ltem] Operation Result
(M R 8,410 0] aswy/ o | o.26s0m
(@) A 0.0858 (s)| 1-(a0) 0.734822 |

(3 i 1321 (49| 1e(40) 1.265078 |

) b 0.0443 - (an| sy 0.857276

R ‘
o O A | vom KISl Li24157 |
- (6) vF 0.3 9] (Un(e 0.964227

m E 3x 107 60| (3)(42) 1.99906

® o, 66,400 (sh| (an(s0) L3

) P, 1,000 (5| (48)(50) 2.2485
Lo gy | o (53)| cosh(s1) 286483

an | ep 0.09 (54| sinh (51) 260463

1) | 1-@) (1) 0.19 (s5)| cos (52) -0.62701

(13) | 1-2(6) 0.4 (56) | sin(52) - 0.77901

a9 | 3-3(1) n (sn| (8 (s0) 3.01969

as) [V 185227 (s8) | (47 (56) 066785

(16) | 2-(6) L7 (59| (51)+(59) 3.68754

an | mao/m | o (60) | (58)-(5T) ~ 235184

asy | am 0 (6] (53)-(55 3.49191

a9 | yansay| o (62| (49)(s1) 3.36699

(0 | o2 440896 108 || (63) | (2)(9) 0,0038

(2n | (2)(20) 34.8308x 10% [ (64) | (5)+(63) 0.0529

@) ] aen-30) | 1393232« 08| (65) | 2¢2/(42) 0.11346

@) (Vi 118035 104 |1 (66) | (59) (64)+(65)(s2)| 0.57709

@0 | (23)/7012) 19411 10* || (67) | (5)/(56) 0085082

(25) | (20)+(19) 19411 104 1| (68) | ()(4D) - 0.067003 |

@) | /@ 9.112 (69) | (53)(56)/(48) 198434

(@ | (9)(26) 08112104 || (70) | (S4)(55)/¢an)  {-1.96349

@) | @)/an 1.52286 ()| (53)(58) -L19623

(M) | (-1 0.52286 (12) | (54)(56) 200153

(30) | 28)+1 - 252286 D] (682749 | 014534

(3 | (2)(30)/(28) | 0.86620 (0| a9 a/(4n | o672

(32 | (19)/(20) 0 H 5| n-04 -2.425

(33 | 232730y | 0 (16) | (68)(75) ~0.16368

(30 | 1-33) 1 (M| 69-00.03) | 400317

@35) | v - | 086620 (18) | (69)+(70)+(76)  [-0.14283

(36) | asy7a16) 0.97192 ) | 5961 0.31374

an | 35 c6/2 0.42094 (80) | (60)(67) -0.20010

8 |-an/an 0 (81) | 1-(39)-(79) 0.68626

(39) | 238)/(16) 0 (82) [ 9 (B1/(17)  |-0,02395

w0 | v 0.722264 (83) | (3N+(30)+(82) | 0.1989

(40 | (15)/(40) 2.28763 |

(2 |y 151249

wy | e nn 481298 108

*Date
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fon Operation _Results
(84) | (121) 0.1 | -0.06974 | 007035 | -0.07038
(89) | 1-(84) Ll 1.0697¢ | 1.07035 [ 1.07083
(86) | (3)(85) - 141 | L | e
on | (sH@s) | 1ees1 | Lmasz | 1ess | a2 |
(89) | (51)(80) 01734 | -0.1195 | -0.1206 | -0.1205
- (89) | (52) (85) 24734 | 2.4083 | 24067 | 2.406%
(%) | (52) (84) 02209 | -0,1568 | -0.1582 {-0.1581
(91) | cosh (47 33694 | 32060 | 32102 | 3.2009
(92) | sinn (87) 32176 | 30470 | 3.0505 | 3.0502 |
(93) | cosh (88) 10M72| 100715 | 100728 | 1.00727
- (34) | sinh (38) ~0.17224 | -0.11978 | -0.12089 | -0,1207
- (95) | cos (89) ~0.78494 | -0.74096 | ~0.74190 | -0.74183
(96) | sin (89) 0.61957 | 0.67155 | 0.67051 | 0.67059
- (91 | cos (30) - 09782| 098773 | 038751 0.98753
- (98) | sin (30) -0.22301 | -0,15616 | -0.15754 | —0.15744
| (99) | (91) (9)+(93) (%6) | -0.12272 | 0.17556 | 0.16966 | 0.17010
(100) | (92) N+ (3) (95) | 3.27178 | 3.09837 | 3.10209 | 3.10177]
(101) | (31) (%6)/ (48) 1ese02 | 19171 | 1s13m2| 1817
(102) | (92 (95)/(an) | -2.94610 | -2.63358 | -2.63995 | -2.63044
(103) | (3) (%) ~2.64478 | -2.37618 | -2.38165 | -2.38120
(100 | (%2)(%) Lasasa | 204621 | 2000 200503
(108) | (69) (104)/(49) 0.13853 | ©0.14219 | 0.4213 | 0.14213
(106) | (44) (104)/ 47 o.61642 | o.53271| os3us| -
(107 | (103)-(106) -3.26120 | -3.00809 | 301410 | -
(109) | (68) (207 -0.21851 | -0.2010 | 020005 | -~ |
(109) | (A7) (99) | -0.10520 | 0.15050 | 0.14545 | 0.14582]
' (110) | (48) (100)  3.67996 | 3.48491 | 3.48910 | 340874
| a1 | o9 (110 357476 | 3.63541 | 3.63455 | 3.63456
| aon-u0) | -a7esie| -3 | dyms | -
(113) | (101)-(202)+(105) | 4.94065 | 4.69048 | 4.69500 | 4.69534|
(114) | (101)+(102)+(108) | 130859 | —0.92047 | -0.92818 | - |
(115)| 671 (11D 0.30415 | ©0.3031| 0.30923| 0.30924
(1)} 6na1w) -0.32205 | ~0.28370 | -0.28m6 | - |
MmN} 1=(9-(115) 0.69585 | 0.69069 | 0.63077 | 0.6%076]
(A1) | 14:017)/(113) | -0.184%0 | -0.13554 | -0.13654 | -
1 19| an+ e+ | -0.00841{ 000170 | ~0.00006) -
(120) | (83)-(119) 0.28230| 0.19519 | o0.19695 | -
(121) | (84) (#3)/(120) .. | -0.06974 | 0,07035 | -0.07033| -
(12| 1-() - 0.68626. | 0.68626 | 0.68626]
(129) | (122)(113) - 3.21089 | 322254 | 3.22022
(126)| (65)/2 - | o.05673 | o0.05673| o0.05673|
(125) | (117 (124)/(123) - 0.01217 | 001216 001216
. | 1.029/5 - | rLus | L8 | L8
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